

ENVIRONMENTAL PRODUCT DECLARATION

in accordance with ISO 14025, ISO 21930 and EN 15804

Owner of the declaration:

Program operator:

Publisher:

Declaration number:

Registration number:

ECO Platform reference number:

Issue date:

Valid to:

SCHWENK Sverige AB

The Norwegian EPD Foundation

The Norwegian EPD Foundation

NEPD-3120-1780-EN

NEPD-3121-1780-EN

-

17.09.2021

17.09.2026

CEM II/A-M (S-LL) 52,5 N

SCHWENK Sverige AB

www.epd-norge.no

General information

Product:

CEM II/A-M (S-LL) 52,5 N

Program operator:

The Norwegian EPD Foundation Pb. 5250 Majorstuen, 0303 Oslo Phone: +47 23 08 80 00 e-mail: post@epd-norge.no

Declaration number:

NEPD-3121-1780-EN

ECO Platform reference number:

This declaration is based on Product Category Rules:

CEN Standard EN 15804:2012+A1:2013 serves as core PCR EN 16908:2017 Cement and building lime

Statement of liability:

The owner of the declaration shall be liable for the underlying information and evidence. EPD Norway shall not be liable with respect to manufacturer information, life cycle assessment data and evidences.

Declared unit:

1 tonne CEM II/A-M (S-LL) 52,5 N

Declared unit with option:

A1,A2,A3,A4

Functional unit:

General information on verification of EPD from EPD tools:

Independent verification of data, other environmental information and the declaration according to ISO 14025:2010, § 8.1.3 and § 8.1.4. Individual third party verification of each EPD is not required when the EPD tool is i) integrated into the company's environmental management system, ii) the procedures for use of the EPD tool are approved by EPDNorway, and iii) the process is reviewed annualy. See Appendix G of EPD-Norway's General Programme Instructions for further information on EPD tools.

Verification of EPD tool:

Independent third party verification of the EPD tool, background data and test-EPD in accordance with EPDNorway's procedures and guidelines for verification and approval of EPD tools.

Ellen Soldal, Norsus AS

(no signature required)

Owner of the declaration:

SCHWENK Sverige AB Contact person: Lars Hansson Phone: +46 40-31 75 52

e-mail: lars.hansson@schwenk.se

Manufacturer:

SCHWENK Latvija SIA

Place of production:

SCHWENK Latvija SIA Plant Broceni Latvia

Management system:

ISO 9001 – certifikat 1689 ISO 14001 – certifikat 1689M ISO 27001 – certifikat 1689I

Organisation no:

556089-9287

Issue date: 17.09.2021

Valid to: 17.09.2026

Year of study:

2020

Comparability:

EPD of construction products may not be comparable if they not comply with EN 15804 and seen in a building context.

Development and verification of EPD:

The declaration has been developed and verified using EPD tool lca.tools ver EPD2020.11, developed by LCA.no AS. The EPD tool is integrated into the company's environmental management system, and has been approved by EPD-Norway

Developer of EPD:

Lars Hansson

Reviewer of company-specific input data and EPD:

Lars Busterud

Approved:

Sign

Håkon Hauan, CEO EPD-Norge

Product

Product description:

Binder for concrete production, dry mortars and ground stabilisation

Product specification

Materials	kg	%
Aggregate	298,94	21,14
SCM	69,67	4,93
Additives	33,93	2,40
Raw materials, Mineral	1011,62	71,54
Total:	1414,16	

Technical data:

CEM II/A-M (S-LL) 52,5 N More information at www.schwenk.se

Market:

Reference service life, product

Depending of the area of use

Reference service life, building

LCA: Calculation rules

Declared unit:

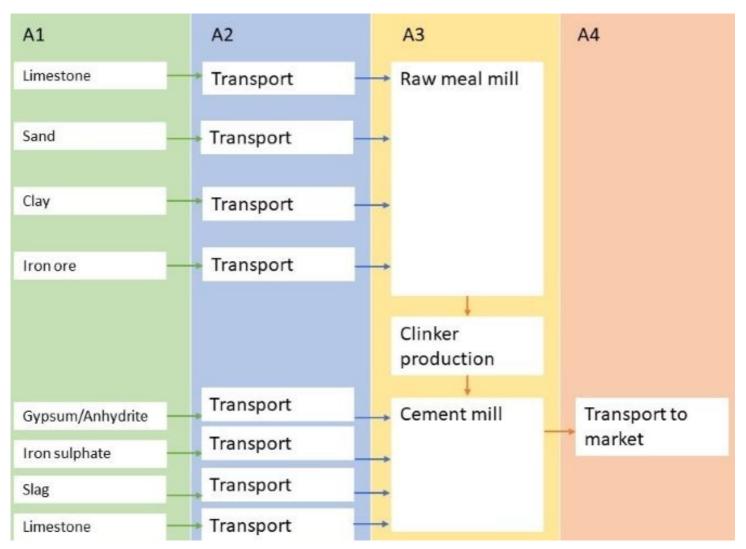
1 tonne CEM II/A-M (S-LL) 52,5 N

Cut-off criteria:

All major raw materials and all the essential energy is included. The production processes for raw materials and energy flows with very small amounts (less than 1%) are not included. These cut-off criteria do not apply for hazardous materials and substances.

Allocation:

The allocation is made in accordance with the provisions of EN 15804. Incoming energy and water and waste production in-house is allocated equally among all products through mass allocation. Effects of primary production of recycled materials is allocated to the main product in which the material was used. The recycling process and transportation of the material is allocated to this analysis.


Data quality:

Specific data for the product composition are provided by the manufacturer. They represent the production of the declared product and were collected for EPD development in the year of study. Background data is based on registered EPDs according to EN 15804, Ostfold Research databases, ecoinvent and other LCA databases. The data quality of the raw materials in A1 is presented in the table below.

Materials	Source	Data quality	Year
Aggregate	LCA.no	Database	2016
Additives	ecoinvent 3.4	Database	2017
Aggregate	ecoinvent 3.5	Database	2017
Additives	ecoinvent 3.4	Database	2018
Aggregate	ecoinvent 3.5	Database	2018
Raw materials, Mineral	LCA.no	Database	2018
SCM	LCA.no	Database	2019
SCM	Norcem	Specific data	2020

System boundary:

Additional technical information:

Transport A4 is for Broceni - Västerås

The value for Broceni - Landskrona is 19,9 kgCO2/tonne cement

The value for Broceni - Surte is 23,6 kgCO2/tonne cement

LCA: Scenarios and additional technical information

The following information describe the scenarios in the different modules of the EPD.

Transport from production place to user (A4)

Туре	Capacity utilisation (incl. return) %	Type of vehicle	Distance km	Fuel/Energy consumption	Unit	Value (I/t)
Truck	55,0 %	Truck, lorry over 32 tonnes, EURO 5	110	0,022823	l/tkm	2,51
Railway					l/tkm	
Boat	50,0 %	Ship, Cement boat	409	0,005051	l/tkm	2,07
Other Transportation					l/tkm	

lv (A5)

Use	(B1)

	Unit	Value
Auxiliary	kg	
Water consumption	m ³	
Electricity consumption	kWh	
Other energy carriers	MJ	
Material loss	kg	
Output materials fr ste treatment	kg	
Dust in the air	kg	
VOC emissions	kg	

Maintenance (B2)/Repair (B3)

Replacement	/DAN	Dofueb	ie benent	/DEV
Replacement	(0.41/	Returb	isnment	(DO)

	Unit Value
Maintenance cycle*	CO
Auxiliary	char.
Other resources	4/100
Water consumption	Scenarios as
Electricity consumption	kWh
Other energy carriers	MJ
Material loss	kg
VOC emissions	kg

	Unit	Value
Replacement cycle*		
Electricity consumption	kWh	
Replacement of worn parts		
* Described above if relevant		_

Unit

Value

Operational energy (B6) and water consumption (B7)

				•
End	ofI	ifo	(C1	

	Unit	Value
Water consumption	m ³	
Electricity consumption	kWh	
Other energy carriers	MJ	
Power output of equipment	KW	

* Described above if relevant		
`A .		
77.4		
40		
7 24		
4/6		
End of Life (C1, v. 70.4		
OF in	Unit	Value
"/C/		value
Hazardous waste disposed	kg	
Collected as mixed construction ws.	kg	
Reuse	kg	
Recycling		
* Described above if relevant A 7. A A A A A A A A A A A A A A A A A A		

Transport to waste processing (C2)

Туре	Capacity utilisation (incl. return) %	Type of vehicle	Distance km	Fuel/Energy consumption	Unit	Value (I/t)
Truck					I/tkm	
Railway					I/tkm	
Boat					I/tkm	
Other Transportation					I/tkm	

LCA: Results

The LCA results are presented below for the declared unit defined on page 2 of the EPD document.

System boundaries (X=included, MND=module not declared, MNR=module not relevant)

Pr	oduct sta	age	instal	ruction lation age	User stage End of life stage					Beyond the system bondaries						
Raw materials	Transport	Manufacturing	Transport	Assembly	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	De- construction demolition	Transport	Waste processing	Disposal	Reuse-Recovery- Recycling- potential
A1	A2	A3	A4	A5	В1	B2	В3	В4	B5	В6	В7	C1	C2	C3	C4	. D
Х	Х	Х	Х	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	. MND

Environmental impact

Parameter	Unit	A1-A3	A4
GWP	kg CO ₂ -eq	6,80E+02	1,62E+01
ODP	kg CFC11 -eq	1,15E-05	3,10E-06
POCP	kg C ₂ H ₄ -eq	6,51E-02	2,87E-03
AP	kg SO ₂ -eq	1,30E+00	8,07E-02
EP	kg PO ₄ ³⁻ -eq	2,44E-01	1,57E-02
ADPM	kg Sb -eq	3,01E-04	2,37E-05
ADPE	MJ	1,57E+03	2,45E+02

GWP Global warming potential; ODP Depletion potential of the stratospheric ozone layer, POCP Formation potential of tropospheric photochemical oxidants; AP Acidification potential of land and water; EP Eutrophication potential; ADPM Abiotic depletion potential for non fossil resources; ADPE Abiotic depletion potential for fossil resources

"Reading example: 9,0 E-03 = 9,0*10-3 = 0,009"

*INA Indicator Not Assessed

Remarks to environmental impacts

The parameter GWP (A1-A3) includes 128,0 kg CO2-eq. from the combustion of alternative fossil fuels during clinker production. In accordance with the "polluter pays" principle / EN 15804 /, the emissions will be added to the production system that caused the waste. In this EPD, the CO2 contribution from alternative fossil fuels has not been deducted. This is to be able to compare calculated global warming from cement regardless of the status of the waste in different countries.

Resource use

Parameter	Unit	A1-A3	A4
RPEE	MJ	2,99E+02	3,24E+00
RPEM	MJ	0,00E+00	0,00E+00
TPE	MJ	2,99E+02	3,24E+00
NRPE	MJ	1,65E+03	2,50E+02
NRPM	MJ	0,00E+00	0,00E+00
TRPE	MJ	1,65E+03	2,50E+02
SM	kg	6,90E+01	0,00E+00
RSF	MJ	4,46E+02	0,00E+00
NRSF	MJ	1,96E+03	0,00E+00
W	m ³	5,84E-01	4,52E-02

RPEE Renewable primary energy resources used as energy carrier; RPEM Renewable primary energy resources used as raw materials; TPE Total use of renewable primary energy resources; NRPE Non renewable primary energy resources used as energy carrier; NRPM Non renewable primary energy resources used as materials; TRPE Total use of non renewable primary energy resources; SM Use of secondary materials; RSF Use of renewable secondary fuels; NRSF Use of non renewable secondary fuels; W Use of net fresh water

"Reading example: 9,0 E-03 = 9,0*10-3 = 0,009"

*INA Indicator Not Assessed

End of life - Waste

Parameter	Unit	A1-A3	A4
HW	kg	5,12E-02	1,22E-04
NHW	kg	3,74E+01	1,45E+01
RW	kg	INA*	INA*

HW Hazardous waste disposed; NHW Non hazardous waste disposed; RW Radioactive waste disposed

"Reading example: 9,0 E-03 = 9,0*10-3 = 0,009"

*INA Indicator Not Assessed

End of life - Output flow

Parameter	Unit	A1-A3	A4
CR	kg	0,00E+00	0,00E+00
MR	kg	2,29E-01	0,00E+00
MER	kg	9,57E-02	0,00E+00
EEE	MJ	INA*	INA*
ETE	MJ	INA*	INA*

CR Components for reuse; MR Materials for recycling; MER Materials for energy recovery; EEE Exported electric energy; ETE Exported thermal energy

"Reading example: 9,0 E-03 = 9,0*10-3 = 0,009"

*INA Indicator Not Assessed

Additional Norwegian requirements

Greenhouse gas emissions from the use of electricity in the manufacturing phase

National production mix from import, low voltage (production of transmission lines, in addition to direct emissions and losses in grid) of applied electricity for the manufacturing process (A3).

Electricity mix	Data source	Amount	Unit
Electricity, Latvia (kWh)	ecoinvent 3.6	660,38	g CO2-ekv/kWh
Electricity, Latvia (kWh) (Registrert 2021)	ecoinvent 3.6	660,38	g CO2-ekv/kWh

Dangerous substances

The product contains no substances given by the REACH Candidate list or the Norwegian priority list.

Indoor environment

Bibliography

ISO 14025:2010 Environmental labels and declarations - Type III environmental declarations - Principles and procedures.

ISO 14044:2006 Environmental management - Life cycle assessment - Requirements and guidelines.

EN 15804:2012+A1:2013 Environmental product declaration - Core rules for the product category of construction products.

ISO 21930:2017 Sustainability in buildings and civil engineering works - Core rules for environmental product declarations of construction products.

ecoinvent v3, Allocation, cut-off by classification, Swiss Centre of Life Cycle Inventories.

lversen et al., (2018) eEPD v3.0 - Background information for EPD generator system, report 04.18

Vold et al., (2019) EPD generator cement - Background information and LCA data, report 03 and 04.19

NPCR Part A: Construction products and services. Ver. 1.0. April 2017, EPD-Norge.

EN 16908:2017 Cement and building lime - Environmental product declarations - Product category rules complementary to NS-EN 15804

	end-norge no	Program operator and publisher	Phor	ne: +47 23 08 80 (
	epd-norge.no The Norwegian EPD Foundation	The Norwegian EPD Foundation	e-m	ail: post@epd-no
	ne Norwegian EPD Foundation	Post Box 5250 Majorstuen, 0303 Oslo, Norway	web	: www.epd-norg
		Owner of the declaration Pl	none: +4	46 40-31 75 52
B	SCHWENK	SCHWENK Sverige AB e-	ail: laı	rs.hansson@schwenk.se
		c/o Regus, Hylie Boulevard 34 S-215 35 Hyllie, Swedenw	eb: ht	tps://www.schwenk.de/e
		Author of the Life Cycle Assessment	Phor	ne: +47 916 50 910
	(LCA\	LCA.no AS	e-m	ail: post@lca.no
		Dokka 1C 1671 Kråkerøy	web	: www.lca.no
		Developer of EPD generator	Phor	ne: +47 916 50 910
	(LCA)	LCA.no AS	e-m	ail: post@lca.no
	.no	Dokka 1C,1671 Kråkerøy	web	: www.lca.no